www.absolute.com
April 2024

/ABSOLUTE

Working with Absolute APIs

Working with Absolute APIs — Document revision: 9.0-0

Absolute Software Corporation reserves the right to revise this document and to periodically make changes in the
content hereof without obligation of such revisions or changes unless required to do so by prior agreement.

Information contained herein is believed to be correct, but is provided solely for guidance in product application and
not as a warranty of any kind. Absolute Software Corporation assumes no responsibility for use of this information, nor
for any infringements of patents or other rights of third parties resulting from the use of this information.

Absolute Software Corporation
Suite 1400 Four Bentall Centre
1055 Dunsmuir Street

PO Box 49211

Vancouver, British Columbia
Canada V7X 1K8

© 2018 - 2024 Absolute Software Corporation. All rights reserved. Reproduction or transmission in whole or in part, in
any form, or by any means (electronic, mechanical, or otherwise) is prohibited without the prior written consent of the
copyright owner. Absolute and Persistence are trademarks of Absolute. Self-healing Endpoint Security is a trademark of
Absolute. All other trademarks are property of their respective owners.

Working with Absolute APIs

Contents
Accessing and authenticating APIs ... 4
AP ACCESS 4
P O O QUISIE S . . 4
AP OIS 5
Creating an APl tOKEN 6
Preparing requUests for APIS 7
Creating a canonical reqQUEST 7
Creating @ SigNINg SN ... 10
Creating @ SigNING KeY ... o 12
Creating @ SIgNature 12
Adding the authorization header 13
Authenticating headers in @ reqQUeSt ... 14
Filtering and SOMtiNg ... oo 15
S 15
SO I DY 19
1Y (=ToL 19
SSKID ol 20
0D o 20
P At ON 20
TroubleshOOting 21

Working with Absolute APIs APl access

Our APIs provide you with access to Absolute functionality and data without having to use the Secure Endpoint
Console.

NOTE Depending on the permissions associated with your API token and the Absolute product licenses associated
with your account, the Absolute APIs may not be available.

This document provides information about:
¢ Accessing and authenticating APIs
e Preparing requests for APIs
¢ Authenticating headers in a request
¢ Filtering and sorting

e Troubleshooting

Absolute APIs support connections using Transport Layer Security (TLS) protocol version 1.2 only.

Accessing and authenticating APIs

To access the Absolute APIs, you use the Secure Endpoint Console to perform the initial setup, which includes
assigning user roles and providing access to the console. You must then create and manage API tokens that are
required for authentication and authorization.

APl access
The URL you use to access the Absolute APIs depends on which URL you use to access the Secure Endpoint Console:
¢ If you use https://cc.absolute.com to access the console, use the following URL to access the API:
https://api.absolute.com
 If you use https://cc.us.absolute.com to access the console, use the following URL to access the API:
https://api.us.absolute.com
¢ If you use https://cc.eu2.absolute.com to access the console, use the following URL to access the API:

https://api.eu2.absolute.com

[NOTE Examples in this document use https://api.absolute.com J

Prerequisites
There are two prerequisites before developers can use the Absolute APIs. The developer:

e must be assigned an Absolute user role. The role can be a default user role, or a custom user role defined by your
organization.

¢ has at least one API token in the Secure Endpoint Console.

https://cc.absolute.com/
https://cc.us.absolute.com/
https://cc.eu2.absolute.com/

Working with Absolute APIs API tokens

APl tokens

[NOTE The V2 APIs only support generated tokens. J

A generated API token consists of two parts: token ID and secret key. The token ID is a random UUID, and the secret
key is generated with a crypto-level random number generator.

Permissions

By default, the token has the same permissions as your assigned user role. This means that if you have access to
certain functionality in the Secure Endpoint Console, the token you create has equivalent access in the API. If your user
account is assigned to a single device group when the token is created, the token is assigned that device group. If your
user account's device group assignment is updated in the future, the token isn't updated. The token is still assigned to
the original device group.

When you create the token, you can modify the token's permissions. You can't assign a token permissions that your
user role doesn't have, but you can remove permissions. For added security, limit the API token to the minimum
permissions required for its intended use. Once the token is created, the permissions for the token can't be changed.

[NOTE Only those permissions necessary for API calls can be added to an API token. J

If the user account associated with the token is suspended or deleted, the token is no longer valid. If the user is
deleted, the token is also deleted.

Permission requirements

To use an endpoint in the API, the token generally requires the same feature permissions that your user role requires to
perform the action in the console. To use the Device Report API to return basic device information, the token requires
the View permission for both Device Fields and Device reports. The token may also require more permissions
depending on the parameters you want to return. For example, to see the geoData parameter, the token also needs
to have the View and Address-level view permissions for Geolocation.

[NOTE For all Reach endpoints, the token must have the Run permission for Reach Script. J

Expiry

Newly created tokens must have an expiry date. By default, the expiry date is 90 days from the day the token is
created. You can set the expiry date to be up to one year from the creation date. If you edit a token that doesn't have
an expiry date, you are required to add an expiry date before you can save your changes. You can continue to use the

token until 23:59:59 UTC on the day the token expires. Before a token expires, you can edit the expiry date in the
Absolute console.

Token ID

The token ID is a random GUID-like string and is public information, like a user name. It is associated with the same
role and device group as the Absolute user account.

Secret key

The secret key is a random sequence of bits and is private and sensitive information.

Store this key securely, and do not share it.

https://help.absolute.com/corporate/html5/en-us/Content/DeviceGroups/DG_ManageDeviceGroupsFolders.htm#AssignedDGs
https://help.absolute.com/corporate/html5/en-us/Content/User Mgmt/UM_TempSuspendUser.htm
https://help.absolute.com/corporate/html5/en-us/Content/User Mgmt/UM_EditUserProfile.htm#Deleting
https://help.absolute.com/corporate/html5/en-us/Content/User Mgmt/UM_CustomRolePermissions.htm#FeaturePermissions
https://help.absolute.com/corporate/html5/en-us/Content/PDFs/EN/abt-api-device-report.pdf
https://help.absolute.com/corporate/html5/en-us/Content/Settings/API_ManageToken.htm#EditToken

Working with Absolute APIs Creating an API token

Creating an APl token

=» To create an API token containing a generated token ID and secret key:

1.
2.

3
4
5.
6
7

Log in to the Secure Endpoint Console as user with the Manage permission for API credentials.

On the navigation bar, click Settings > ¢t APl management.

Click Create API token.

In Add title, give the token a name.

[Optional] To help identify the token, click the field under the title and enter a Description for this request.
Select Generate Token.

Click the Expiration date field and set an expiration date at least one day in the future by doing one of the
following:

e Enter a date in YYYY-MM-DD format

e Use the Calendar picker to select a date

¢ Select one of the predefined expiry date ranges

If you don't set the Expiration, the expiration date defaults to 90 days.

To change the token's permissions, select View, Manage, and Other Actions for each permission you want to add.
Clear View, Manage, and Other Actions for each permission you want to remove. If you select Manage for a
permission, View is automatically selected. If you don't change the permissions, the token has the same
permissions as your assigned user role.

Token permissions can't be modified once the token is created.

To include all the permissions assigned to your user role, scroll to the bottom of the Permissions section and click
Select All. To remove all permissions, click Clear.

[NOTE Assigned device group is for your information only. J

[Optional] Enter the IP addresses that you want to allow to access the APIs. Both IPv4 and IPv6 IP addresses in
single and CIDR format are accepted. If no IP addresses are entered, the APIs can be accessed from any IP address.
Approved IP addresses can be added to a token after it has been created.

a. Enter or copy and paste one of the following in to Approved IP Address:

e Anindividual IP address

e Alist of IP addresses separated by a space (), comma (,), semi-colon (;), or line break
b. Click Add or press ENTER.

IP addresses are listed below the entry field. Validation is done on each IP address. If validation fails, you see
Invalid IP address. Do one of the following:

e To delete the IP address, click © (Remove).

e To edit the IP address, click in the IP address, make your changes, and press TAB or click away from the IP
address. Validation is done on the updated IP address.

Duplicate entries are ignored.

Working with Absolute APIs Creating a canonical request

10. Click Save.
After you click Save, none of the fields can be edited. To make changes, you need to edit the token.
11. From the Token Key Details section, do one of the following to capture the token information:
¢ To copy the token information
a. Click in the Token ID field or click Copy beside the token ID and paste the token ID to a text file.
b. Click in the Secret key field or click Copy beside the secret key and paste the secret key to the text file.
c. Save the file to a secure location on your computer.

¢ To download the token ID and secret key, click Download Token. The token ID and secret key are downloaded
in a . token file to your operating system's downloads folder. You can use a text editor, such as Notepad, to
open the file.

If you close this dialog without downloading or copying the secret key for generated tokens, you
cannot retrieve the information later. Record or save the secret key now, or you must delete this token and
create a new one.

12. After you have captured the token information, click X (Close).

On the API Token Management page, the new token is added to your list of tokens. An AP/ token updated event is
logged to Event History. For more information on token management, see Managing API tokens in the online help.

It is imperative that you keep your secret keys secure. They are comparable to passwords—don't share
them with anyone.

Preparing requests for APls

You must use proper format and include your token in order to properly authorize your API request. To make an API
request, you:

1. Create a canonical request
2. Create a signing string

3. Create a signing key

4. Create a signature

5. Add the authorization header

This document provides some basic examples. For more code samples, contact Absolute Technical Support
(www.absolute.com/en/support).

Creating a canonical request

The canonical request looks like this:

CanonicalRequest =
HTTPRequestMethod + '\n' +
CanonicalURI + '\n' +
CanonicalQueryString + '\n' +
CanonicalHeaders +
LowerCase (HexEncode (Hash (RequestPayload)))

https://help.absolute.com/corporate/html5/en-us/Content/Settings/API_ManageToken.htm#EditToken
https://help.absolute.com/corporate/html5/en-us/Content/Settings/API_ManageToken.htm
https://www.absolute.com/en/support

Working with Absolute APIs Creating a canonical request

The following table describes the parameters:

CanonicalRequest parameters

Parameter Description

HTTPRequestMethod All uppercase request methods:
e GET

e POST
e PUT
e DELETE

CanonicalURI The Request path, excluding the hostname and query parameters
Path segments are URL-encoded in case they contain spaces or other characters.
Normalize the path using URI generic syntax

Example

URL: https://api.absolute.com/v2/reporting/devices?Stop=2
URI path: /v2/reporting/devices
CanonicalURI: /v2/reporting/devices

CanonicalQueryString The entire query string, URL-encoded
If no query-string is present, use an empty string ""
1. Create a list of all arguments.
2. Sort arguments in ascending order; for example, 'A’ is before 'a'.

3. If not already encoded, URI encode the parameter name and value using URI generic
syntax.

4. Reassemble the list into a string.
For each argument in argumentList:

{ str += argument.name + '=' + argument.value; if ! last
argument str += '&'; }

Example
The following is for the CanonicalQueryString for the top 10 results, skipping the first 20

results:

1. Create a list of arguments:
e Stop=10

e Sskip=20
2. Sort arguments in ascending order:
e S$skip=20
e Stop=10
3. URI enocde:
e %24skip=20
e $24top=10

Working with Absolute APIs Creating a canonical request

4. Reassemble the list into a string:
o $24skip=206&%24top=10

CanonicalHeaders Only a subset of headers is included
Sample code:

CanonicalHeaders=""; //For each header in ProtectedHeaders
{ CanonicalHeaders+= lowercase (header)
+ \l : Al

+ trimmed (header value)

+ '"\n';
}
Encoded hash of Hash the entire body using SHA-256 algorithm, HexEncode, and apply lowercase
payload If there is no payload, use an empty string

Example basic canonical request

The following request has no query parameters:

GET
/v2/reporting/devices

host:api.absolute.com

content-type:application/json

x-abs-date:20170926T172032Z
e3b0c44298fclcl49afbf4cB8996£fb92427ae41e46490934ca495991b7852b855

~ o U1 b~ W N

Example canonical request with one query parameter

The following canonical request has one query parameter:
e substringof ('760001', esn) eq true
URL encoded: substringof%28%2760001%27%2C%20esn%29%20eg%20true

GET

/v2/reporting/devices
%24filter=substringof%$28%2760001%27%2C%20esn%29%20eqg%20true
host:api.absolute.com

content-type:application/json

x-abs-date:20170926T172213%
e3b0c44298£fclcl49afbf4c8996£fb92427ae41e46490934ca495991b7852b855

~ o U1 b~ W N

Working with Absolute APIs Creating a signing string

Example canonical request with two query parameters

The following canonical request has two query parameters:

w N

~ o U

substringof ('760001',esn) eqg true
URL encoded: substringo£%28%2760001%27%2C%20esn%29%20eg%20true

substringof ('2700000', esn) eqg false
URL encoded: substringo£%28%2760000%27%2C%20esn%29%20eg%20false

GET

/v2/reporting/devices
$24filter=substringof%28%2760001%27%2C%$20esn%29%20eg%20true%20ands20substringof$28%2
760000%27%2C%20esn%29%20eg%20false

host:api.absolute.com

content-type:application/json

x-abs-date:20170926T172255Z
e3b0c44298fclcl49afbfdc8996fb92427ae41e46490934ca495991b7852b855

Creating a signing string

The signing string uses this format:

1| StringToSign =

2 Algorithm + \n +

3 RequestDateTime + \n +

4 CredentialScope + \n +

5 HashedCanonicalRequest
Parameters

The following table shows descriptions and examples of the parameters of the signing string:

StringToSign parameters

Algorithm The string used to identify the algorithm

Example

ABS1-HMAC-SHA-256

RequestedDateTime The date and time (in UTC) from X-Abs-Date

Format: <YYYY><MM><DD>T<HH><MM><S8S>Z

Example

20170926T1720327

10

Working with Absolute APIs Creating a signing string

CredentialScope The CredentialScope is defined in three parts:

1. the date (in UTC) of the request
Format: YYYYMMDD

2. region or data center (must be in lowercase)
Possible values:
e cadc

e usdc

e ecudc

[NOTE Each data center has a unique URL.]

3. version or type of signature
Always abs1

Example

20170926/cadc/absl

HashedCanonicalRequest | The hashed, hex-converted, and lowercase value of the canonical request.
Example

63£83d2c713906119d4954e6766ce90871e41334c3£2906d64201639d
273fal9

Example StringToSign

The following StringToSign is based on the example values in from the previous table:

1| ABS1-HMAC-SHA-256
2| 20170926T1720322
3| 20170926/cadc/absl
4]

63£83d2c713906119d4954e6766ce90871e41334c3f29b6d64201639d273£fall

11

Working with Absolute APIs Creating a signing key

Creating a signing key
HMAC-SHA256 is used for authentication.

The following table shows descriptions of the inputs used to create a signing key:

Signing key inputs

S

The kSecret value is calculated
by concatenating the static string
“ABS1” with the value of the
secret key from your API token
and then encoding the resulting
string using UTF8.

The secret is the secret key value
from the token that you created
in the Secure Endpoint Console.

kSecret=UTF8.GetBytes ("ABS1”+secret)

Alternative sample pseudocode:

kSecret=UTF8.GetBytes (String.Concatenate (Y*ABS1”, secret))

The date (in UTC) of the request
Format: <YYYY><MM><DD>
The result is a byte array.

kDate=HMAC (kSecret, Date)

Use the binary hash to get a pure

kSigning=HMAC (kDate, "absl request") . .
- binary kSigning key

NOTE Do not use a hexdigest
method.

The result is a byte array.

Creating a signature

As a result of creating a signing key, kSigning is used as the key for hashing. The StringToSign is the string data to be
hashed.

The signature looks like this:

signature = lowercase (hexencode (HMAC (kSigning, StringToSign)))

Parameters

The following table shows describes the parameters.

Signature parameters

Parameter Description

kSigning The byte array that was created from the signing key

StringToSign The signing string

12

Working with Absolute APIs Adding the authorization header

Example of signing the string

This example shows the resulting signature for a request which is then used in the authorization header.

Signature=el5b64a4£91a0e53c2£91a6£52756a74bc21e6£175795cbf85bcl5e8ef32aab5b

Adding the authorization header
Use the standard HTTP Authorization header.

1| Authorization: <algorithm> Credential=<token id>/<CredentialScope>,
SignedHeaders=<SignedHeaders>, Signature=<signature>

Parameters

The following table shows descriptions and examples of the parameters of the authorization header.

Authorization header parameters

ETET - Description

Authorization The string used to identify the algorithm

Example

ABS1-HMAC-SHA-256

Credential The token ID

Example

cc2423f2-cc28-48a6-9dce-a268d5e3cdl1

CredentialScope | The CredentialScope is defined in three parts:

1. The date (in UTC)of the request
Format: <YYYY><MM><DD>

2. Region or data center (must be in lowercase)
Possible values:
e cadc

e usdc

¢ cudc

[NOTE Each data center has a unique URL. J

3. Version or type of signature

Example

20210926/cadc/absl

13

Working with Absolute APIs Adding the authorization header

SignedHeaders Semi-colon (;) delimited list of lowercase headers used in CanonicalHeaders

Example

host;content-type;x—-abs-date

Signature The fully calculated resulting signature from the signing key and the signature

Example

elbb64adf91al0e53c2f91a6f52756a74bc2le6f175795cbf85bcl5e8ef32aabb

Example authorization header

The following authorization header uses the values from the previous table.

1| Authorization: ABS1-HMAC-SHA-256 Credential=cc2423f2-cc28-48a6-9dce-
a268d5e3cd01/20170926/cadc/absl, SignedHeaders=host;content-type;x-abs-date,
Signature=el5b64a4£91a0e53c2f91a6£52756a74bc21e6£175795cbf85bcl5e8ef32aabb

[NOTE There is a space after each comma in the authorization header. It may not appear if you use copy and paste.]

Authenticating headers in a request

We include only a small subset of HTTP headers in a request to minimize the possibility of proxies modifying them in
transit.

You must use the following headers for all of your API requests.

Authentication headers

Host The domain name of the server where the request is sent

Example

api.absolute.com

Content-Type | The media type of the resource

Example

application/json

X-Abs-Date The automatically generated header that indicates the time (in UTC) the request was made
Format: <YYYY><MM><DD>T<hh><mm><ss>Z.

Example

20210926T1720327

14

Working with Absolute APIs Sfilter

Authorization = The HTTP authorization header
Format: <algorithm> Credential=<token id>/CredentialScope, SignedHeaders=<SignedHeaders>,
Signature=<signature>

Example

ABS1-HMAC-SHA-256 Credential=cc2423f2-cc28-48a6-9dce-a268d5e3cd01/
20210926/cadc/absl, SignedHeaders=host;content-type;x-abs-date,
Signature=el5b64a4f91a0e53c2f91a6£52756a74bc21e6£175795cbf85bcl5e8e£f3
2aabb

NOTE There is a space after each comma in the authorization header. It may not appear if you use
copy and paste.

Filtering and sorting

Absolute uses a subset of query options from Open Data Protocol (OData) for filtering and sorting. OData version 1 and
2 are supported. OData query parameters must be alphabetized and URI encoded.

For more information about OData, see: https://www.odata.org/documentation.
The applicable OData system query options are:

e Sfilter

e Sorderby

e S$select

e $skip

e Stop

Sfilter

The $filter system query option filters items included in the response with the specified expression.
Operators supported by $filter are described in the following tables:

e Logical operators supported by sfilter

e Grouping operators supported by $filter

¢ String functions supported by $filter

The examples in the table use the Device Reporting API. For example, GET
/v2/reporting/devices?$filter=agentStatus eq 'A'.

15

https://www.odata.org/documentation/

Working with Absolute APIs Sfilter

Logical operators supported by $filter

Logical operator | Description

Eq Equal
Examples
To view a list of all devices with an Active status:
 Sfilter=agentStatus eq 'A'
¢ URL encoded:
$24filter=agentStatus%20eg%20%27A%27
To view a list of all devices that are currently frozen:
o Sfilter=dfStatus.statusCode eq 'FRZN'
¢ URL encoded:
%$24filter=dfStatus.statusCode%$20eq%20%27FRZN%27
To view a list of all devices that have 1734 in their ESN (Identifier):
 Sfilter=substringof('1734',esn) eq true
¢ URL encoded:

Ne Not equal

Examples
To view a list of all devices with a status that isn't Active:
 Sfilter=agentStatus ne 'A'
¢ URL encoded:
$24filter=agentStatus%20ne%s20%27A%27
To view a list of all devices with a status that isn't Disabled:
 Sfilter=agentStatus ne 'D'

e URL encoded:
$24filter=agentStatus%20ne%20%27D%27

Gt Greater than

Example

To view a list of all devices with greater than 1 GB (1073741824 bytes) of available physical ram:
 Sfilter=availablePhysicalRamBytes gt 1073741824

¢ URL encoded:
$24filter=availablePhysicalRamBytes%20gt%201073741824

16

Working with Absolute APIs Sfilter

Ge Greater than or equal

Example

To view a list of all devices with greater than or equal to 1 GB (1073741824 bytes) of available
physical ram
 Sfilter= availablePhysicalRamBytes ge 1073741824

¢ URL encoded:
%$24filter=availablePhysicalRamBytes%20ge%201073741824

Lt Less than
Examples

To view a list of all devices with less than 1 GB (1073741824 bytes) of available physical ram
 Sfilter=availablePhysicalRamBytes [t 1073741824

¢ URL encoded:
$24filter=availablePhysicalRamBytes%201t%$201073741824

To view a list of all devices that have a connection date/time less than January 1, 2021 at
midnight (yyyy-mm-ddThh:mm:ssZ):

o Sfilter=lastConnectedUtc It datetime'2021-01-01T00:00:00Z"

e URL encoded:

$24filter=lastConnectedUtc%201t%20datetime%272021-01-
01TO0%3A00%3A00Z%2

Le Less than or equal
Examples

To view a list of all devices with less than or equal to 1 GB (1073741824 bytes) of available
physical ram
 Sfilter=availablePhysicalRamBytes le 1073741824

¢ URL encoded:
$24filter=availablePhysicalRamBytes%201t%201073741824

To view a list of all devices that have a connection date/time less than or equal to January 1,
2021 at midnight (yyyy-mm-ddThh:mm:ssZ):
 Sfilter=lastConnectedUtc le datetime'2021-01-01T00:00:00Z"

¢ URL encoded:
$24filter=lastConnectedUtc%201e%20datetime$272021-01-
01TO0%3A00%3A007Z%27

17

Working with Absolute APIs

Sfilter
And Logical and
Example

To view a list of all devices with less than 1 GB (1073741824 bytes) and more than 500 MB
(524288000 bytes) of available physical ram

e %?24filter=availablePhysicalRamBytes It 1073741824 and availablePhysicalRamBytes gt
524288000

e URL encoded:
$24filter=availablePhysicalRamBytes%201t%$201073741824%20
and%20availablePhysicalRamBytes$20gt%$20524288000

Or Logical or

Examples

To view a list of all devices with less than 1 GB (1073741824 bytes) of available physical ram or
less than 1 GB (1073741824 bytes) of available virtual ram

 Sfilter=availablePhysicalMemroyBytes It 1073741824 or availableVirtualMemoryBytes It
1073741824

e URL encoded:
$24filter=availablePhysicalRamBytes%201t%201073741824%20
or%20availableVirtualMemoryBytes$201t%$201073741824

To view a list of devices with '1734' in IEMI, serial number, or a custom device field

 Sfilter=substringof('1734', imei) or substringof('1734', serial) or (cdf ne null and substringof
('1734',cdf.11241xJ2S2GbreeK8pChkg))

* URL encoded:
%24filter=substringof%$28%271734%27%2Cimei%29%20
0r%20substringof$28%271734%27%2Cserial%s29%20
0r%20%28cdf%20ne%20null%20and%20substringof
$28%271734%27%2Ccdf.117241xJ252GbreeK8pChkg%29%29

Not Logical negation
Example

To view a list of devices with a username that doesn't contain LPTP
 Sfilter=not substringof('LPTP',username)

e URL encoded:
$24filter=not%20substringof%$28%27LPTP%27%2Cusername%29

Grouping operator supported by Sfilter

Grouping operator | Description

() Precedence grouping
Example

/Products?$filter=(Price sub 5) gt 10

18

Working with Absolute APIs Sorderby

Functions can also be used with $filter.

[NOTE You can use a NULL literal in comparisons as ISNULL or COALESCE operators are not defined.]

String functions supported by $filter

String

function Description

e Returns records where the value of the parameter in string p1 contains string p1
substringof \

(string po, Example

string p1) To view a list of all devices where the ESN contains the string '1734'

 Sfitler=substringof('1734',esn)

e URL encoded:
GET
/v2/reporting/devices?%24filter=substringof%28%$271734%27%2Cesn%29

bool Returns records where the value of the parameter in string pl ends with string p0
endswith

(string pO, Example

string p1) To view a list of all devices where the ESN ends with the string '1734'

o Sfilter=endswith('1734',esn)

e URL encoded:
GET /v2/reporting/devices?%$24filter=endswith%28%271734%27%2Cesn%29

$orderby

The sorderby system query option sorts a resulting list of data as you instruct.

To sort the Device Report so that devices with the most current lastUpdatedUtc dates show first in the list:
 Sorderby=lastUpdatedUtc desc

¢ URL encoded:
GET /v2/reporting/devices?%$24orderby=lastUpdatedUtc%20desc

Sselect

The $select system query option requests a specific set of properties.
To see only the manufacturer, model, and serial number attributes of your devices:
e Sselect=systemManufacturer,systemModel,serial

¢ URL encoded:

GET /v2/reporting/
devices?%24select=systemManufacturer%$2CsystemModel$2Cserial

19

Working with Absolute APIs Sskip

$skip
The $skip system query option requests the number of items to be excluded from the result.
To return the second page of results when data is returned in batches of 20:
o $skip=20&$top=20
¢ URL encoded:
GET /v2/reporting/devices?%$24skip=20&%24top=20

[NOTE Use with the Stop query option to paginate your results.]

Stop

The $top system query option requests the number of items to be included in the result.

To limit the number of records returned to the first 10:
e Stop=10
¢ URL encoded:
GET /v2/reporting/devices?%24top=10

Pagination

For the Device Reporting APl and the Software Reporting API, you can use the $skip and $top query parameters
together to paginate your results. The $top query specifies the number of results to be returned. The $skip query
specifies the number of results that are excluded from the result.

Example

Using the Device Reporting API, you want to get the first 60 results, returned in batches of 20.
To get the first 20 results, results 1 to 20, you only need to use the $top query.

GET /v2/reporting/devices?%24top=20

To get the next 20 results, results 21 to 40, you need to skip the first 20, which were returned in the last request. Use
Sskip to exclude the first 20 results, and $top to get the next 20 results.

GET /v2/reporting/devices/%$24skip=20&%24top=20

To get the final 20 results, results 41 to 60, you need to skip the first 40, which were returned in the first two
requests. Use $skip to exclude the first 40 results, and Stop to get the next 20 results.

GET /v2/reporting/devices/%$24skip=40&%24top=20

20

Working with Absolute APIs

Pagination

Troubleshooting

The following table lists some HTTP status codes and describes the corresponding errors that you may encounter when

using Absolute APIs.

HTTP status code errors

Status

Possible error
code

401 Incorrect HTTP method

Incorrect HTTP method case

Incorrect X-Abs-Date value or format

Incorrect Query Parameters encoding

403 The tokenlID belongs to a user that does
not have permission to access the URL.

Mitigation

Ensure that the method used in the calculation matches the
actual request method.

In the calculation, the HTTP method must be all uppercase; for
example, GET, POST, PUT, DELETE.

Ensure that the date value is accurate, is in the UTC timezone,
and is in the <YYYY><MM><DD>T<HH><MM><SS>7 format.

Ensure that the query parameters are URL-encoded when
creating the CanonicalRequest.

For example, the query parameter $top=15 would be
encoded as $24top=15.

Ensure that the user who created the token has the
appropriate permissions.

If you are unable to resolve the errors listed above, enable Authentication Debugging in the Secure Endpoint Console
on the APl Token Management page. After that, repeat the failed API requests to log the details. You can then contact
Technical Support with the details collected in the log. Ensure to include the following:

¢ tokenID
¢ CanonicalRequest
e X-Abs-Date

e Signature

21

	Accessing and authenticating APIs
	API access
	Prerequisites
	API tokens
	Creating an API token

	Preparing requests for APIs
	Creating a canonical request
	Creating a signing string
	Creating a signing key
	Creating a signature
	Adding the authorization header

	Authenticating headers in a request
	Filtering and sorting
	$filter
	$orderby
	$select
	$skip
	$top
	Pagination

	Troubleshooting

