
Working with Absolute APIs

www.absolute.com
June 2023

Working with Absolute APIs — Document revision: 7.23-0

Absolute Software Corporation reserves the right to revise this document and to periodically make changes in
the content hereof without obligation of such revisions or changes unless required to do so by prior
agreement.

Information contained herein is believed to be correct, but is provided solely for guidance in product
application and not as a warranty of any kind. Absolute Software Corporation assumes no responsibility for
use of this information, nor for any infringements of patents or other rights of third parties resulting from the
use of this information.

Absolute Software Corporation
Suite 1400 Four Bentall Centre
1055 Dunsmuir Street
PO Box 49211
Vancouver, British Columbia
Canada V7X 1K8

© 2018 - 2023 Absolute Software Corporation. All rights reserved. Reproduction or transmission in whole or in
part, in any form, or by any means (electronic, mechanical, or otherwise) is prohibited without the prior
written consent of the copyright owner. Absolute and Persistence are trademarks of Absolute. Self-healing
Endpoint Security is a trademark of Absolute. All other trademarks are property of their respective owners.

Working with Absolute APIs

2

Our APIs provide you with access to Absolute functionality and data without having to use the Absolute console.

This document provides information about:

l Accessing and authenticating APIs

l Preparing requests for APIs

l Authenticating headers in a request

l Filtering and sorting

l Troubleshooting

IMPORTANT Absolute APIs support connections using Transport Layer Security (TLS) protocol version 1.2 only.

Accessing and authenticating APIs
To access the Absolute APIs, you use the Absolute console to perform the initial setup, which includes assigning
user roles and providing access to the console. You must then create and manage API tokens that are required for
authentication and authorization.

API access
The URL you use to access the Absolute APIs depends on which URL you use to access the Absolute console:

l If you use https://cc.absolute.com to access the console, use the following URL to access the API:

https://api.absolute.com

l If you use https://cc.us.absolute.com to access the console, use the following URL to access the API:

https://api.us.absolute.com

l If you use https://cc.eu2.absolute.com to access the console, use the following URL to access the API:

https://api.eu2.absolute.com

NOTE Examples in this document use https://api.absolute.com

Prerequisites
There are two prerequisites before developers can use the Absolute APIs. The developer:

l must be assigned an Absolute user role. The role can be a default user role, or a custom user role defined by
your organization.

l has at least one API token in the Absolute console.

3

Working with Absolute APIs API access

https://cc.absolute.com/
https://cc.absolute.com/
https://cc.eu2.absolute.com/

API tokens
NOTE The V2 APIs only support generated tokens.

A generated API token consists of two parts: token ID and secret key. The token ID is a random UUID, and the
secret key is generated with a crypto-level random number generator. Permissions for the token carry the same
permissions as your assigned user role. That is, if you have access to certain functionality in the Absolute console,
then the token you create has access to equivalent functionality in the API. If the user account associated with the
token is suspended or deleted, the token is no longer valid. If the user is deleted, the API token is also deleted.

Ensure that the developer's user role is granted appropriate permissions. For example, to create a Freeze request
using the Device Freeze API, the user role associated with the API token must be granted Perform permissions for
Freeze Device.

NOTE Newly created tokens must have an expiry date. The expiry date can be up to one year from the day the
token is created. If you edit a token that doesn't have an expiry date, you are required to add an expiry date before
you can save your changes. You can continue to use the token until 23:59:59 UTC on the day the token expires.
Before a token expires, you can edit the expiry date in the Absolute console. For more information, see API
authentication in the online help.

Token ID
The token ID is a random GUID-like string and is public information, like a user name. It is associated with the same
role and device group as the Absolute user account.

Secret key
The secret key is a random sequence of bits and is private and sensitive information.

IMPORTANT Store this key securely, and do not share it.

Creating an API token

To create an API token containing a generated token ID and secret key:

1. Log in to the Absolute console as user with Manage permissions for API credentials.

2. Do one of the following:

l On the navigation bar, click and then click API Management.

l On the quick access toolbar on any console page, click > API Token.

3. On the API Management page, click Create API token.

4. In Add title, give the token a name.

5. [Optional] To help identify the token, click the field under the title and enter a Description for this request.

6. Select Generate Token.

7. Click the Expiration date field and set an expiration date at least one day in the future by doing one of the
following:

4

Working with Absolute APIs API tokens

l Enter a date in YYYY-MM-DD format

l Use the Calendar picker to select a date

l Select one of the predefined expiry date ranges

If you don't set the Expiration, the expiration date defaults to one year plus a day.

8. [Optional] Enter the IP addresses that you want to allow to access the APIs. Both IPv4 and IPv6 IP addresses in
single and CIDR format are accepted. If no IP addresses are entered, the APIs can be accessed from any IP
address. Approved IP addresses can be added to a token after it has been created.

a. Enter or copy and paste one of the following in to Approved IP Address:

l An individual IP address

l A list of IP addresses separated by a space (), comma (,), semi-colon (;), or line break

b. Click Add or press ENTER.

IP addresses are listed below the entry field. Validation is done on each IP address. If validation fails, you
see Invalid IP address. Do one of the following:

l To delete the IP address, click .

l To edit the IP address, click in the IP address, make your changes, and press TAB or click away from the
IP address. Validation is done on the updated IP address.

Duplicate entries are ignored.

9. Click Save.

After you click Save, none of the fields can be edited. To make changes, you need to edit the token.

10. From the Token Key Details section, do one of the following to capture the token information:

l To copy the token information

a. Click in the Token ID field or click Copy beside the token ID and paste the token ID to a text file.

b. Click in the Secret key field or click Copy beside the secret key and paste the secret key to the text file.

c. Save the file to a secure location on your computer.

l To download the token ID and secret key, click Download Token. The token ID and secret key are
downloaded in a .token file to your operating system's downloads folder. You can use a text editor, such
as Notepad, to open the file.

IMPORTANT If you close this dialog without downloading or copying the secret key for generated tokens, you
cannot retrieve the information later. Record or save the secret key now, or you must delete this token and
create a new one.

11. After you have captured the token information, click or Close.

On the API Token Management page, the new token is added to your list of tokens. An API token updated event is
logged to Event History. For more information on token management, see the API Management section in the
online help.

IMPORTANT It is imperative that you keep your secret keys secure. They are comparable to passwords—don't
share them with anyone.

5

Working with Absolute APIs Creating an API token

Preparing requests for APIs
You must use proper format and include your token in order to properly authorize your API request. To make an
API request, you:

1. Create a canonical request

2. Create a signing string

3. Create a signing key

4. Create a signature

5. Add the authorization header

This document provides some basic examples. For more code samples, contact Absolute Technical Support
(www.absolute.com/en/support).

Creating a canonical request
The canonical request looks like this:

CanonicalRequest =
 HTTPRequestMethod + '\n' +
 CanonicalURI + '\n' +
 CanonicalQueryString + '\n' +
 CanonicalHeaders +
 LowerCase(HexEncode(Hash(RequestPayload)))

The following table describes the parameters:

Parameter Description

HTTPRequestMethod All uppercase request methods:
l GET

l POST

l PUT

l DELETE

CanonicalURI The Request path, excluding the hostname and query parameters
Path segments are URL-encoded in case they contain spaces or other characters.
Normalize the path using URI generic syntax

URL: https://api.absolute.com/v2/reporting/devices?$top=2
URI path: /v2/reporting/devices
CanonicalURI: /v2/reporting/devices

Example

CanonicalQueryString The entire query string, URL-encoded
If no query-string is present, use an empty string ""

1. Create a list of all arguments.

2. Sort arguments in ascending order; for example, 'A' is before 'a'.

CanonicalRequest parameters

6

Working with Absolute APIs Creating a canonical request

https://www.absolute.com/en/support

Parameter Description

3. If not already encoded, URI encode the parameter name and value using URI generic syntax.

4. Reassemble the list into a string.
For each argument in argumentList:

{ str += argument.name + '=' + argument.value; if ! last
argument str += '&'; }

The following is for the CanonicalQueryString for the top 10 results, skipping the first 20
results:

1. Create a list of arguments:
l $top=10

l $skip=20

2. Sort arguments in ascending order:
l $skip=20

l $top=10

3. URI enocde:
l %24skip=20

l %24top=10

4. Reassemble the list into a string:
l %24skip=20&%24top=10

Example

CanonicalHeaders Only a subset of headers is included
Sample code:

CanonicalHeaders=""; //For each header in ProtectedHeaders
{ CanonicalHeaders+= lowercase(header)
 + ':'
 + trimmed(header value)
 + '\n';
}

Encoded hash of payload Hash the entire body using SHA-256 algorithm, HexEncode, and apply lowercase
If there is no payload, use an empty string

The following request has no query parameters:

1 GET
2 /v2/reporting/devices
3
4 host:api.absolute.com
5 content-type:application/json
6 x-abs-date:20170926T172032Z
7 e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

Example basic canonical request

7

Working with Absolute APIs Creating a canonical request

The following canonical request has one query parameter:
l substringof('760001', esn) eq true

URL encoded: substringof%28%2760001%27%2C%20esn%29%20eq%20true

1 GET
2 /v2/reporting/devices
3 %24filter=substringof%28%2760001%27%2C%20esn%29%20eq%20true
4 host:api.absolute.com
5 content-type:application/json
6 x-abs-date:20170926T172213Z
7 e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

Example canonical request with one query parameter

The following canonical request has two query parameters:
l substringof('760001',esn) eq true

URL encoded: substringof%28%2760001%27%2C%20esn%29%20eq%20true
l substringof ('2700000', esn) eq false

URL encoded: substringof%28%2760000%27%2C%20esn%29%20eq%20false

1 GET
2 /v2/reporting/devices
3 %24filter=substringof%28%2760001%27%2C%20esn%29%20eq%20true%20and%20substringof%2

8%2760000%27%2C%20esn%29%20eq%20false
4 host:api.absolute.com
5 content-type:application/json
6 x-abs-date:20170926T172255Z
7 e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

Example canonical request with two query parameters

Creating a signing string
The signing string uses this format:

1 StringToSign =
2 Algorithm + \n +
3 RequestDateTime + \n +
4 CredentialScope + \n +
5 HashedCanonicalRequest

8

Working with Absolute APIs Creating a signing string

Parameters
The following table shows descriptions and examples of the parameters of the signing string:

Parameter Description Example

Algorithm The string used to identify the
algorithm

ABS1-HMAC-SHA-256

RequestedDateTime The date and time (in UTC) from X-
Abs-Date
Format:
<YYYY><MM><DD>
T<HH><MM><SS>Z

20170926T172032Z

CredentialScope The CredentialScope is defined in
three parts:

1. the date (in UTC) of the
request
Format: YYYYMMDD

2. region or data center (must be
in lowercase)
Possible values:
l cadc

l usdc

l eudc

NOTE Each data center has a
unique URL.

3. version or type of signature
Always abs1

20170926/cadc/abs1

HashedCanonicalRequest The hashed, hex-converted, and
lowercase value of the canonical
request.

63f83d2c7139b6119d4954e6766ce90871e413
34c3f29b6d64201639d273fa19

StringToSign parameters

The following StringToSign is based on the example values in from the previous table:

1 ABS1-HMAC-SHA-256
2 20170926T172032Z
3 20170926/cadc/abs1
4 63f83d2c7139b6119d4954e6766ce90871e41334c3f29b6d64201639d273fa19

Example StringToSign

9

Working with Absolute APIs Creating a signing string

Creating a signing key
HMAC-SHA256 is used for authentication.

The following table shows descriptions of the inputs used to create a signing key:

Input Description

kSecret = UTF8.GetBytes(“ABS1”+ secret)

Alternative sample pseudocode:

kSecret = UTF8.GetBytes(String.Concatenate(“ABS1”,secret))

The kSecret value is
calculated by concatenating
the static string “ABS1” with
the value of the secret key
from your API token and
then encoding the resulting
string using UTF8.
The secret is the secret key
value from the token that
you created in the Absolute
console.

kDate = HMAC(kSecret, Date)
The date (in UTC) of the
request
Format: <YYYY><MM><DD>
The result is a byte array

kSigning = HMAC(kDate , "abs1_request")
Use the binary hash to get a
pure binary kSigning key
NOTE Do not use a
hexdigest method.
The result is a byte array.

Signing key inputs

Creating a signature
As a result of creating a signing key, kSigning is used as the key for hashing. The StringToSign is the string data to
be hashed.

The signature looks like this:

signature = lowercase(hexencode(HMAC(kSigning, StringToSign)))

Parameters
The following table shows describes the parameters.

Parameter Description

kSigning The byte array that was created from the signing key

StringToSign The signing string

Signature parameters

10

Working with Absolute APIs Creating a signing key

This example shows the resulting signature for a request which is then used in the authorization header.

Signature=e15b64a4f91a0e53c2f91a6f52756a74bc21e6f175795cbf85bc15e8ef32aab5

Example of signing the string

Adding the authorization header
Use the standard HTTP Authorization header.

1 Authorization: <algorithm> Credential=<token id>/<CredentialScope>,
SignedHeaders=<SignedHeaders>, Signature=<signature>

Parameters
The following table shows descriptions and examples of the parameters of the authorization header.

Parameter Description Example

Authorization The string used to identify the algorithm ABS1-HMAC-SHA-256

Credential The token ID cc2423f2-cc28-48a6-9dce-a268d5e3cd01

CredentialScope The CredentialScope is defined in three
parts:

1. The date (in UTC)of the request
Format: <YYYY><MM><DD>

2. Region or data center (must be in
lowercase)
Possible values:
l cadc

l usdc

l eudc

NOTE Each data center has a
unique URL.

3. Version or type of signature

20210926/cadc/abs1

SignedHeaders Semi-colon (;) delimited list of
lowercase headers used in
CanonicalHeaders

host;content-type;x-abs-date

Signature The fully calculated resulting signature
from the signing key and the signature

e15b64a4f91a0e53c2f91a6f52756a74bc21e6f17
5795cbf85bc15e8ef32aab5

Authorization header parameters

11

Working with Absolute APIs Adding the authorization header

The following authorization header uses the values from the previous table.

1 Authorization: ABS1-HMAC-SHA-256 Credential=cc2423f2-cc28-48a6-9dce-
a268d5e3cd01/20170926/cadc/abs1, SignedHeaders=host;content-type;x-abs-date,

2 Signature=e15b64a4f91a0e53c2f91a6f52756a74bc21e6f175795cbf85bc15e8ef32aab5

NOTE There is a space after each comma in the authorization header. It may not appear if you use copy and
paste.

Example authorization header

Authenticating headers in a request
We include only a small subset of HTTP headers in a request to minimize the possibility of proxies modifying them
in transit.

You must use the following headers for all of your API requests.

Header Description Example

Host The domain name of the server where
the request is sent

api.absolute.com

Content-Type The media type of the resource application/json

X-Abs-Date The automatically generated header that
indicates the time (in UTC) the request
was made
Format:
<YYYY><MM><DD>T<hh><mm><ss>Z.

20210926T172032Z

Authorization The HTTP authorization header
Format: <algorithm> Credential=<token
id>/CredentialScope,
SignedHeaders=
<SignedHeaders>
,Signature=<signature>

ABS1-HMAC-SHA-256 Credential=cc2423f2-cc28-
48a6-9dce-a268d5e3cd01/20210926/cadc/abs1,
SignedHeaders=host;content-type;x-abs-date,
Signature=e15b64a4f91a0e53c2f91a6f52756a
74bc21e6f175795cbf85bc15e8ef32aab5

Authentication headers

Filtering and sorting
Absolute uses a subset of query options from Open Data Protocol (OData) for filtering and sorting. OData version 1
and 2 are supported. OData query parameters must be alphabetized and URI encoded.

For more information about OData, see: https://www.odata.org/documentation.

The applicable OData system query options are:

l $filter

l $orderby

l $select

12

Working with Absolute APIs Adding the authorization header

https://www.odata.org/documentation/

l $skip

l $top

$filter
The $filter system query option filters items included in the response with the specified expression.

Operators supported by $filter are described in the following tables. The examples use the Device Reporting API.
For example, GET /v2/reporting/devices?$filter=agentStatus eq 'A'.

Logical
operator Description Examples

Eq Equal To view a list of all devices with an Active status:
l $filter=agentStatus eq 'A'

l URL encoded:
%24filter=agentStatus%20eq%20%27A%27

To view a list of all devices that are currently frozen:
l $filter=dfStatus.statusCode eq 'FRZN'

l URL encoded:
%24filter=dfStatus.statusCode%20eq%20%27FRZN%27

To view a list of all devices that have 1734 in their ESN (Identifier):
l $filter=substringof('1734',esn) eq true

l URL encoded:
%24filter=substringof%28%271734%27%2Cesn%29%20eq%20true

Ne Not equal To view a list of all devices with a status that isn't Active:
l $filter=agentStatus ne 'A'

l URL encoded:
%24filter=agentStatus%20ne%20%27A%27

To view a list of all devices with a status that isn't Disabled:
l $filter=agentStatus ne 'D'

l URL encoded:
%24filter=agentStatus%20ne%20%27D%27

Gt Greater than To view a list of all devices with greater than 1 GB (1073741824 bytes) of available physical
ram:
l $filter=availablePhysicalRamBytes gt 1073741824

l URL encoded:
%24filter=availablePhysicalRamBytes%20gt%201073741824

Ge Greater than
or equal

To view a list of all devices with greater than or equal to 1 GB (1073741824 bytes) of available
physical ram
l $filter= availablePhysicalRamBytes ge 1073741824

l URL encoded:
%24filter=availablePhysicalRamBytes%20ge%201073741824

Logical operators supported by $filter

13

Working with Absolute APIs $filter

Logical
operator Description Examples

Lt Less than To view a list of all devices with less than 1 GB (1073741824 bytes) of available physical ram
l $filter=availablePhysicalRamBytes lt 1073741824

l URL encoded:
%24filter=availablePhysicalRamBytes%20lt%201073741824

To view a list of all devices that have a connection date/time less than January 1, 2021 at
midnight (yyyy-mm-ddThh:mm:ssZ):
l $filter=lastConnectedUtc lt datetime'2021-01-01T00:00:00Z'

l URL encoded:
%24filter=lastConnectedUtc%20lt%20datetime%272021-01-
01T00%3A00%3A00Z%27

Le Less than or
equal

To view a list of all devices with less than or equal to 1 GB (1073741824 bytes) of available
physical ram
l $filter=availablePhysicalRamBytes le 1073741824

l URL encoded:
%24filter=availablePhysicalRamBytes%20lt%201073741824

To view a list of all devices that have a connection date/time less than or equal to January 1,
2021 at midnight (yyyy-mm-ddThh:mm:ssZ):
l $filter=lastConnectedUtc le datetime'2021-01-01T00:00:00Z'

l URL encoded:
%24filter=lastConnectedUtc%20le%20datetime%272021-01-
01T00%3A00%3A00Z%27

And Logical and To view a list of all devices with less than 1 GB (1073741824 bytes) and more than 500 MB
(524288000 bytes) of available physical ram
l %24filter=availablePhysicalRamBytes lt 1073741824 and availablePhysicalRamBytes gt

524288000

l URL encoded:
%24filter=availablePhysicalRamBytes%20lt%201073741824%20
and%20availablePhysicalRamBytes%20gt%20524288000

Or Logical or To view a list of all devices with less than 1 GB (1073741824 bytes) of available physical ram
or less than 1 GB (1073741824 bytes) of available virtual ram
l $filter=availablePhysicalMemroyBytes lt 1073741824 or availableVirtualMemoryBytes lt

1073741824

l URL encoded:
%24filter=availablePhysicalRamBytes%20lt%201073741824%20
or%20availableVirtualMemoryBytes%20lt%201073741824

To view a list of devices with '1734' in IEMI, serial number, or a custom device field
l $filter=substringof('1734', imei) or substringof('1734', serial) or (cdf ne null and

substringof('1734',cdf.l1Z41xJ2S2GbreeK8pChkg))

l URL encoded:
%24filter=substringof%28%271734%27%2Cimei%29%20
or%20substringof%28%271734%27%2Cserial%29%20
or%20%28cdf%20ne%20null%20and%20substringof
%28%271734%27%2Ccdf.l1Z41xJ2S2GbreeK8pChkg%29%29

14

Working with Absolute APIs $filter

Logical
operator Description Examples

Not Logical
negation

To view a list of devices with a username that doesn't contain LPTP
l $filter=not substringof('LPTP',username)

l URL encoded:
%24filter=not%20substringof%28%27LPTP%27%2Cusername%29

Grouping operator Description Example

() Precedence grouping /Products?$filter=(Price sub 5) gt 10

Grouping operator supported by $filter

Functions can also be used with $filter.

NOTE You can use a NULL literal in comparisons as ISNULL or COALESCE operators are not defined.

String
function Description Example

bool
substringof
(string p0,
string p1)

Returns
records
where the
value of the
parameter in
string p1
contains
string p1

To view a list of all devices where the ESN contains the string '1734'
l $fitler=substringof('1734',esn)

l URL encoded:
GET
/v2/reporting/devices?%24filter=substringof%28%271734%27%2Ces
n%29

bool
endswith
(string p0,
string p1)

Returns
records
where the
value of the
parameter in
string p1 ends
with string p0

To view a list of all devices where the ESN ends with the string '1734'
l $filter=endswith('1734',esn)

l URL encoded:
GET
/v2/reporting/devices?%24filter=endswith%28%271734%27%2Cesn%29

String functions supported by $filter

$orderby
The $orderby system query option sorts a resulting list of data as you instruct.

To sort the Device Report so that devices with the most current lastUpdatedUtc dates show first in the list:

l $orderby=lastUpdatedUtc desc

l URL encoded:

GET /v2/reporting/devices?%24orderby=lastUpdatedUtc%20desc

15

Working with Absolute APIs $orderby

$select
The $select system query option requests a specific set of properties.

To see only the manufacturer, model, and serial number attributes of your devices:

l $select=systemManufacturer,systemModel,serial

l URL encoded:

GET /v2/reporting/
devices?%24select=systemManufacturer%2CsystemModel%2Cserial

$skip
The $skip system query option requests the number of items to be excluded from the result.

To return the second page of results when data is returned in batches of 20:

l $skip=20&$top=20

l URL encoded:

GET /v2/reporting/devices?%24skip=20&%24top=20

NOTE Use with the $top query option to paginate your results.

$top
The $top system query option requests the number of items to be included in the result.

To limit the number of records returned to the first 10:

l $top=10

l URL encoded:

GET /v2/reporting/devices?%24top=10

Pagination
For the Device Reporting API and the Software Reporting API, you can use the $skip and $top query parameters
together to paginate your results. The $top query specifies the number of results to be returned. The $skip
query specifies the number of results that are excluded from the result.

Using the Device Reporting API, you want to get the first 60 results, returned in batches of 20.
To get the first 20 results, results 1 to 20, you only need to use the $top query.

GET /v2/reporting/devices?%24top=20

To get the next 20 results, results 21 to 40, you need to skip the first 20, which were returned in the last request.
Use $skip to exclude the first 20 results, and $top to get the next 20 results.

GET /v2/reporting/devices/%24skip=20&%24top=20

Example

16

Working with Absolute APIs $select

To get the final 20 results, results 41 to 60, you need to skip the first 40, which were returned in the first two
requests. Use $skip to exclude the first 40 results, and $top to get the next 20 results.

GET /v2/reporting/devices/%24skip=40&%24top=20

Troubleshooting
The following table lists some HTTP status codes and describes the corresponding errors that you may encounter
when using Absolute APIs.

Status
code Possible error Mitigation

401 Incorrect HTTP method Ensure that the method used in the calculation matches the actual
request method.

Incorrect HTTP method case In the calculation, the HTTP method must be all uppercase; for
example, GET, POST, PUT, DELETE.

Incorrect X-Abs-Date value or format Ensure that the date value is accurate, is in the UTC timezone, and
is in the <YYYY><MM><DD>T<HH><MM><SS>Z format.

Incorrect Query Parameters encoding Ensure that the query parameters are URL-encoded when creating
the CanonicalRequest.
For example, the query parameter $top=15 would be encoded as
%24top=15.

403 The tokenID belongs to a user that does not
have permission to access the URL.

Ensure that the user who created the token has the appropriate
permissions.

HTTP status code errors

If you are unable to resolve the errors listed above, enable Authentication Debugging in the Absolute console on
the API Token Management page. After that, repeat the failed API requests to log the details. You can then contact
Technical Support with the details collected in the log. Ensure to include the following:

l tokenID

l CanonicalRequest

l X-Abs-Date

l Signature

17

Working with Absolute APIs Pagination

	Accessing and authenticating APIs
	API access
	Prerequisites
	API tokens
	Creating an API token

	Preparing requests for APIs
	Creating a canonical request
	Creating a signing string
	Creating a signing key
	Creating a signature
	Adding the authorization header

	Authenticating headers in a request
	Filtering and sorting
	$filter
	$orderby
	$select
	$skip
	$top
	Pagination

	Troubleshooting

